

Interlaboratory Variability of Slip Coefficient Testing of Organic Zinc Primers

Justin Ocel, PhD P.E – FHWA TFHRC

Mir Ali – FHWA TFHRC

Robert Kogler – Rampart, LLC

U.S. Department of transportation Federal Highway Administration

4

TURNER-FAIRBANK HIGHWAY RESEARCH CENTER

Big Deal, Who Cares.....

Some organic zinc rich coatings no longer meet Class B performance

- Paint manufactures claim no change in formulation
- Paint manufactures blame the testing agencies
- Testing agencies blame the testing specification

"Welcome to my Nightmare on Elm Street" Dee McNeil – Sherwin-Williams

Test Matrix

- 1. Round Robin Testing 4 labs
 - One federal research lab
 - One academic research lab
 - · Two commercial testing labs

2. Five Organic Zinc-Rich Primers

- PPG Amercoat 68HS (epoxy)
- Sherwin-Williams Zinc-Clad III HS (epoxy)
- Carboline Carbozinc 859 (epoxy)
- Wasser MC 100 Zinc (moisture-cured urethane)
- International Interzinc 315B (epoxy)

3. Two Coating Thicknesses

• +1 and +2 mils over manufactures recommendations

Results - "The Decoder Ring"

- 1. Labs 1, 2, 3, and 4
- 2. Coatings A, B, C, D, and E
- 3. Specimen follow format of "XY-Z"
 - "X" = letter of coating
 - "Y" = 1 or 2 based on coating thickness
 - "Z" = specimen number since five replicates tested
 - Therefore, Coating B, +1 mils, specimen 3 is "B1-3"

TURNER-FAIRBANK HIGHWAY RESEARCH CENTER

Results – All Slip Coefficients

Lab	Specimen	A1	A2	B1	B2	C1	C2	D1	D2	E1	E2
	1	0.55	0.53	0.55	0.57	0.61	0.60	0.46	0.46	0.47	0.45
	2	0.54	0.48	0.54	0.55	0.61	0.62	0.48	0.34	0.44	0.45
1	2 3	0.55	0.51	0.56	0.55	0.62	0.61	0.38	0.47	0.47	0.44
		0.53	0.54	0.53	0.56	0.63		0.46	0.45	0.43	0.47
		0.52	0.53	0.55	0.56	0.60	0.57	0.46	0.47	0.44	0.46
	1	0.51	0.48	0.54	0.54	0.29	0.65	0.31	0.51	0.47	0.35
	2	0.306	0.43	0.54	0.74	0.60	0.63	0.50	0.27	0.47	0.18
2	2 3	0.441	0.51	0.55	0.72	0.58	0.65	0.53	0.52	0.47	0.34
		0.392	0.53	0.54	0.54	0.47	0.66	0.38	0.63	0.25	0.44
	5	0.535	0.49	0.56	0.35	0.61	0.66	0.49	0.49	0.38	0.43
	1	0.57	0.57	0.56	0.51	0.61	0.60	0.51	0.53	0.40	0.37
	2 3	0.56	0.55	0.56	0.55	0.61	0.59	0.51	0.52	0.38	0.41
3		0.55	0.51	0.57	0.51	0.63	0.61	0.50	0.54	0.48	0.33
		0.57	0.53	0.59	0.52	0.60	0.61	0.51	0.54	0.41	ь
	5	0.53	0.55	0.58	0.56	0.61	0.61	0.51	0.52	0.44	b
			0.54			0.59	0.57			0.45	0.46
	2 3		0.53			0.58	0.51			0.48	0.46
4			0.53			0.60	0.59			0.46	0.40
			0.54			0.59	0.60			0.42	0.43
	5		0.55			0.59	0.61			0.46	0.44

U.S. Department of Transportation

Highlights of Task Group Recommendations

- 1. Mandate the use of two displacement measuring devices
- 2. Increase clamping load to 50 kips (makes math easy)
- 3. Provide enhanced language about loading rates
- 4. Provide language about load train alignment and tolerances

U.S. Department of transportation Federal Highway Administration

Parametric Design Study

	AASHTO Strength I Design Efficiency						
	Web	Top Flange	Bottom Flange				
#1	0.59	0.64	0.88				
#2	0.90	0.89	0.88				
#3	0.93	0.85	0.85				
#4	0.49	0.37	0.47				
#5	0.53	0.80	0.82				
#6	0.98	0.92	0.94				
#7			0.92				
#8	0.70	0.78	0.78				
nt o transport#9	0.94	0.76	0.80				

TURNER-FAIRBANK HIGHWAY RESEARCH CENTER

Parametric Design Study – Discussion Points

- 1. Eliminate Class B, all slip-critical designs use μ =0.35
- Small study from FHWA suggests only ~10% of designs would be affected. Still need to look deeper
- 3. AISC (i.e. Schlafly) should consider similar parametric design study for vertical construction

High Priority Recommendations to RCSC

- 1. Impose tolerances for specimen and load train alignment
- 2. Try to encourage the use of digital DAQ in lieu of analog x-y plotters
- 3. Mandate the use of two displacement sensors, or at least show pictures of proper way to use one sensor and evaluate machine compliance

